POSTERIOR CIRCULATION ANEURYSMS

Introduction

- 15 % of all intracranial aneurysms
- Technically difficult to tackle
- Present in the fifth and sixth decades of life,
- Most often in females.
- Saccular, fusiform or dissecting.

 Saccular aneurysms of posterior circulation most often occur at the basilar apex(45-55%) origins of SCA, PICA and PICA-VA junction, PCA, lower third basilar artery, VBJ and AICA.

- Fusiform aneurysms of vertebrobasilar system occur with intracranial atherosclerosis
- Dissecting aneurysms 31% of the vertebral artery lesions, found in young males
- Dolichoectic aneurysms of vertebral and basilar arteries result from dissections that produce fusiform degeneration

Anomalies associated with aneurysm

- Hypoplastic or fetal PCAs, persistent carotidto-basilar anastomosis arteriovenous malformation in the occipital lobes or cerebellum
- Connective tissue disorders(e.g. Polycystic kidney disease, Marfan's syndrome, Ehlers-Danlos syndrome)

Anatomy

Three vascular territories

Basilar apex –

- Basilar artery(BA) bifurcation,
- Posterior cerebral artery(PCA),
- Superior cerebellar artery(SCA),
- BA-SCA junction,
- Upper basilar artery.

Anatomy

- Basilar trunk -
- Midbasilar artery,
- Anterior inferior cerebellar artery(AICA).
- The vertebral trunk –
- Vertebral artery(VA),
- Posterior inferior cerebellar artery(PICA),
- VA-PICA junction,
- Vertebro-basilar junction(VBJ).

Clinical presentation

Acute subarachnoid haemorrhage

Intraventricular haemorrhage

Obstructive hydrocephalus

Clinical presentation

- Cranial nerve deficit
- Occulomotor paresis aneurysms of basilar apex, upper basilar artery and superior cerebellar artery
- Abducens dysfunction aneurysms of vertebrobasilar junction and lower basilar trunk
- VII and VIII cranial nerve involvement(AICA)
- IX,X,XI(PICA)
- XII nerve PICA and vertebral artery aneurysm.

 Giant aneurysms of the vertebrobasilar system present with mass effect on adjacent cranial nerves and brainstem

 Dissecting aneurysms SAH non-hemorrhagic infarction of thalamus, brainstem or cerebellum signs of cerebral thrombosis; occulomotor palsy Horner's syndrome

Diagnostic studies

Computed tomography

Magnetic Resonance Imaging

Four-vessel digital subtraction angiography

Management Options

- Clipping
- Endovascular
- Bypass procedures
- Others

Surgical indications

- Complex aneurysms
- Vasospasm of parent vessel
- Aberrant anatomy of vessels making
- Negotiations difficult
- Patients choice

Basilar apex

Aneurysms	Trajectory	Approach
Basilar top	Anterosuperior	Subtemporal
PCA		Pterional transsylvian
SCA		Transsylvian
Upper basilar artery		Modified pterional transcavernous transsellar
		Middle subtemporal transtentorial
		Orbitozygomatic
		Extended orbitozygomatic approach

Basilar trunk- lateral

Aneurysms	Trajectory	Approach
Midbasilar artery	Lateral	Transpetrosal (Kawase)
AICA		Transtemporal (Sekhar)
		Retrolabyrinthine transsigmoid
		Combined supra- and infratentorial approach
		Transoral transclival approach
		Transoral transclival with Le Fort I maxillotomy(
		Extended middle fossa approach

Vertebral trunk

Aneurysms	Trajectory	Approach
VA,	Posteroinferior	Midline suboccipital
PICA,		Paramedian suboccipital
VBJ		Far lateral approach
		Extended far-lateral approach

Subtemporal approach

- Supine position with head tilted.
- Temporal craniotomy
- Temporal lobe retracted upwards till cerebral peduncles
- Field centered on third nerve
- Temporal lobe resection indicated if required

Advantages

- Proximal control is ease
- Excellent visualization and easy dissection of perforators
- Anteriorly and Posteriorly directed aneurysms can be tackled easily.
- Fenestrated clips can be placed well

Disadvantages

- Field is narrow
- Access to contralateral P1 is difficult
- Temporal lobe damage
- Intraoperative bleeding is difficult to control
- III nerve palsy is very common

Transylvian approach

- Pterional craniotomy
- OZ osteotomy to improve superior view
- Bone removal (if required)
- sphenoid ridge
- anterior clinoids
- dorsum sellae
- clivus
- medial petrous apex

Advantages

Familiarity with approach

Proximal control is straight forward

Wide exposure is possible

Both P1 can be exposed

Disadvantages

- Exposure of posteriorly located perforators is difficult
- Distal clip blade is difficult to visualize
- Anteriorly or posteriorly directed aneurysms difficult to tackle

Orbitozygomatic and Extended Orbitozygomatic approach

- Extends the pterional approach by removing the superior and lateral portions of the orbit
- Higher view of basilar apex above the posterior clinoid process.
- Inferior exposure by removing three intradural bony obstacles-the anterior clinoid process, the posterior clinoid process and the dorsum sellae.
- Drilling the clivus opens a window to the anterior surface of the basilar artery

Transpetrosal approach

Retrolabyrinthine, translabyrinthine and transcochlear

Approach the basilar trunk from lateral side

ENT surgeon's assistance is required

- Retrolabyrinthine exposure bone posterior to semicircular canals is removed. hearing is preserved
- Translabyrinthine exposure semicircular canals are removed hearing is sacrificed seventh nerve is preserved
- Transcochlear
 hearing and seventh nerve both are sacrificed
 maximum bone is removed

Extended middle fossa approach

- Popularized by Kawase
- Temporal craniotomy
- Extradural mobilization of temporal lobe
- Anterior petrous apex drilling of KAWASE'S triangle
- Approach the aneurysm from superior and anterior trajectory
- Hearing preservation

Far lateral approach

 Lateral suboccipital approach, extreme lateral approach, extreme lateral inferior transcondylar exposure(ELITE)

 Most common approach to aneurysms of the vertebral trunk

- Position
 lateral decubitus with neck flexion and rotation and ipsilateral neck flexion
- Hockey stick or S shaped incision
- Bone removed
- paramedian suboccipital craniotomy
- half to two third of condoyle
- posterior arch of C1
- rim of foramen magnum

- Extended far lateral approach
- Superior occipital bone is removed
- Transverse- sigmoid junction is exposed
- CPA is entered

Combined supra-infra tentorial app

Two maneuvers -

- Posterior mobilization of sigmoid sinus
- Division of tentorium
- Superior petrosal sinus divided
- Vein of Labbe preserved
- Minimal brain retraction

Midline Suboccipital craniotomy

- Indications
- bilateral vertebral aneurysm
- II. distal PICA aneurysms
- III. bypass procedures

Alternative surgical techniques

- Parent artery occlusion
- Wrapping methyl methacrylate silicone, polyvinyl and temporalis fascia
- to induce fibrosis in the wall of the aneurysm
- Trapping of distal aneurysms distal PICA aneurysms

Ligation

- When both Pcom are large in size,
- When balloon occlusion suggests good collateral circulation
- Gradual compression can be used
- Vertebral artery tolerate ligation very well if opposite
- Vertebral is not aberrant.

Cardiac bypass with hypothermic circulatory arrest

- Giant and complex posterior circulation aneurysms
- 24 degree Celsius core cooling, the brain will be protected for 1 hour of complete circulatory arrest.
- Associated with significant morbidity and mortality rates

Endovascular management

- Basilar bifurcation
- Lower basilar trunk
- Vertebrobasilar junction
- Patients choice

- Endovascular obliteration
- **Detachable balloons** Silicone balloons filled with isoosmolar contrast medium (Iohexol) solidification agent like HEMA, latex balloons filled with iohexol or silicone
- Detachable coils
- Free pushable coils (Cook)

MDC – Mechanically Detachable Coils (Balt, France)

IDC – Interlocking Detachable Coils (Japan)

GDC – Guglielmi electrically Detachable Coils (USA)

Factors that limit successful endovascular aneurysm occlusion

- dome-to-neck ratio less than 2 neck
- width greater than 4 mm,
- inadequate endovascular access,
- unstable intraluminal thrombus
- if any arterial branch is incorporated in neck
- Stents can be used for these aneurysm

Thank you